If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-18n+54=4
We move all terms to the left:
n^2-18n+54-(4)=0
We add all the numbers together, and all the variables
n^2-18n+50=0
a = 1; b = -18; c = +50;
Δ = b2-4ac
Δ = -182-4·1·50
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{31}}{2*1}=\frac{18-2\sqrt{31}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{31}}{2*1}=\frac{18+2\sqrt{31}}{2} $
| 4y+1=6y+25 | | 4(-6-6x)=120 | | 3x−38=47 | | 8x-34+9x-40+6x-4=4x+20 | | v^2+6v-27=-9 | | 8x-34+9x-40+6x-4=x | | c=3.14/6 | | 28r=4r2 | | 6m+7=m2+5m-1 | | 50=7(1+7x) | | 20p+10=-30 | | 15-4x=8+2x | | 20p-7=-30 | | 6=12-5x | | 3x+5-3(2x+5)=3x-1+3(2x+5) | | 10(p-6)=100 | | -3(5+4a)=81 | | 7f-(10f-9)=-3 | | 3x²-192=0 | | 4(8n-2)=-168 | | 1x+2.5x=37.5 | | -3c+10=-5c-18-2c | | 4=2u-10 | | 4(x-2)-4(x+2)=-x+8 | | 5r+6(r-6)=-113 | | 30=5y-10 | | 1x+2.5x=40 | | 2x-4x=12-4 | | 5w−2w+3=18 | | -2(4-8p)=-88 | | 7(x−5)+12=7x−22 | | 7x+14=7x+7 |